On uniqueness of Lamé coefficients from partial Cauchy data in three dimensions

نویسندگان

  • Oleg Yu Imanuvilov
  • Gunther Uhlmann
  • Masahiro Yamamoto
چکیده

For the Lamé system, we prove in the three-dimensional case that both Lamé coefficients are uniquely recovered from partial Cauchy data on an arbitrary open subset of the boundary provided that the coefficient μ is a constant. In a bounded domain ⊂ R3 with smooth boundary, we consider the Lamé system

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of second-order elliptic operators in two dimensions from partial Cauchy data.

We consider the inverse boundary value problem in two dimensions of determining the coefficients of a general second-order elliptic operator from the Cauchy data measured on a nonempty arbitrary relatively open subset of the boundary. We give a complete characterization of the set of coefficients yielding the same partial Cauchy data. As a corollary we prove several uniqueness results in determ...

متن کامل

The Calderón Problem with Partial Data in Two Dimensions

We consider the problem of determining a complex-valued potential q in a bounded two-dimensional domain from the Cauchy data measured on an arbitrary open subset of the boundary for the associated Schrödinger equation Δ+q. A motivation comes from the classical inverse problem of electrical impedance tomography. In this inverse problem one attempts to determine the electrical conductivity of a b...

متن کامل

Partial Cauchy Data for General Second Order Elliptic Operators in Two Dimensions

We consider the problem of determining the coefficients of a first-order perturbation of the Laplacian in two dimensions by measuring the corresponding Cauchy data on an arbitrary open subset of the boundary. From this information we obtain a coupled system of ∂z̄ and ∂z which the coefficients satisfy. As a corollary we show that for a simply connected domain we can determine uniquely the coeffi...

متن کامل

Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients

In this paper we study the local behavior of a solution to the Lamé system with Lipschitz coefficients in dimension n ≥ 2. Our main result is the bound on the vanishing order of a nontrivial solution, which immediately implies the strong unique continuation property. This paper solves the open problem of the strong uniqueness continuation property for the Lamé system with Lipschitz coefficients...

متن کامل

Global Uniqueness from Partial Cauchy Data in Two Dimensions

We prove for a two dimensional bounded domain that the Cauchy data for the Schrödinger equation measured on an arbitrary open subset of the boundary determines uniquely the potential. This implies, for the conductivity equation, that if we measure the current fluxes at the boundary on an arbitrary open subset of the boundary produced by voltage potentials supported in the same subset, we can de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012